132 research outputs found

    MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels

    Get PDF
    Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels

    Cluster randomised trials in the medical literature: two bibliometric surveys

    Get PDF
    Background: Several reviews of published cluster randomised trials have reported that about half did not take clustering into account in the analysis, which was thus incorrect and potentially misleading. In this paper I ask whether cluster randomised trials are increasing in both number and quality of reporting. Methods: Computer search for papers on cluster randomised trials since 1980, hand search of trial reports published in selected volumes of the British Medical Journal over 20 years. Results: There has been a large increase in the numbers of methodological papers and of trial reports using the term 'cluster random' in recent years, with about equal numbers of each type of paper. The British Medical Journal contained more such reports than any other journal. In this journal there was a corresponding increase over time in the number of trials where subjects were randomised in clusters. In 2003 all reports showed awareness of the need to allow for clustering in the analysis. In 1993 and before clustering was ignored in most such trials. Conclusion: Cluster trials are becoming more frequent and reporting is of higher quality. Perhaps statistician pressure works

    Validation of Quasi-Invariant Ice Cloud Radiative Quantities with MODIS Satellite-Based Cloud Property Retrievals

    Get PDF
    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar

    Exploring Aerosols near Clouds with High-Spatial-Resolution Aircraft Remote Sensing During SEAC4RS

    Get PDF
    Since aerosols are important to our climate system, we seek to observe the variability of aerosol properties within cloud systems. When applied to the satelliteborne Moderateresolution Imaging Spectroradiometer (MODIS), the Dark Target retrieval algorithm provides global aerosol optical depth (AOD; at 0.55 m) in cloudfree scenes. Since MODIS' resolution (500m pixels, 3 or 10km product) is too coarse for studying nearcloud aerosol, we ported the Dark Target algorithm to the highresolution (~50m pixels) enhancedMODIS Airborne Simulator (eMAS), which flew on the highaltitude ER2 during the Studies of Emissions, Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys Airborne Science Campaign over the United States in 2013. We find that even with aggressive cloud screening, the ~0.5km eMAS retrievals show enhanced AOD, especially within 6 km of a detected cloud. To determine the cause of the enhanced AOD, we analyze additional eMAS products (cloud retrievals and degradedresolution AOD), coregistered Cloud Physics Lidar profiles, MODIS aerosol retrievals, and groundbased Aerosol Robotic Network observations. We also define spatial metrics to indicate local cloud distributions near each retrieval and then separate into nearcloud and farfromcloud environments. The comparisons show that low cloud masking is robust, and unscreened thin cirrus would have only a small impact on retrieved AOD. Some of the enhancement is consistent with clearcloud transition zone microphysics such as aerosol swelling. However, 3D radiation interaction between clouds and the surrounding clear air appears to be the primary cause of the high AOD near clouds

    A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    Get PDF
    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    PACE Technical Report Series, Volume 4: Cloud Retrievals in the PACE Mission: PACE Science Team Consensus Document

    Get PDF
    Earth is a complex dynamical system exhibiting continuous change in its atmosphere, ocean,and surface elements. Nearly all (99.97%) of the energy driving these systems is linked to the Sun. Measurements of reflected sunlight contain a unique signature of wavelength-specific scattering and absorption interactions occurring between incoming solar energy and atmospheric (molecules, aerosols,clouds) and surface features Clouds can affect significantly both shortwave and long wave radiation, depending on altitude/vertical structure, thermodynamic phase, and optical properties. Low, warm, and optically thick clouds predominantly have a cooling effect, while high, cold, optically thin clouds can cause warming by absorbing warmer radiation emitted from the surface and lower atmosphere.When the net difference between outgoing and incoming solar radiation is matched by the net infrared radiation emitted to space, the Earth's climate is in radiative balance. While radiative forcing components (GHGs, aerosols - direct and indirect) contribute to a net radiative imbalance, climate sensitivity is ultimately determined by the contribution of various system feed backs. The role of cloud feedback in a warming climate is currently the largest inter-model uncertainty in climate sensitivity and therefore in climate prediction [Bony and Dufresne 2005]. A comprehensive understanding of current cloud propertiesand dynamic/microphysical processes requires a global perspective from satellites

    NACHOS, a CubeSat-Based High-Resolution UV-Visible Hyperspectral Imager for Remote Sensing of Trace Gases: System Overview, Science Objectives, and Preliminary Results

    Get PDF
    The Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is a high-throughput (f/2.9), high spectral resolution (1.3 nm optical, 0.57 nm sampling) hyperspectral imager covering the 300-500 nm spectral region with 350 spectral bands. The combined 1.5U instrument payload and 1.5U spacecraft bus comprise a 3U CubeSat. Spectroscopically similar to NASA’s Ozone Monitoring Instrument (OMI), which provides wide-field coverage at ~20 km spatial resolution, NACHOS offers complementary targeted measurements at far higher spatial resolution of ~0.4 km/pixel from 500 km altitude over its 15 ̊ across-track field of view. NACHOS incorporates highly streamlined onboard gas-retrieval algorithms, alleviating the need to routinely downlink massive hyperspectral data cubes. This paper discusses the instrument design, requirements leading to it, preliminary results, and science goals, including monitoring NO2 as a proxy for anthropogenic greenhouse gases, low-level degassing of SO2 and halogen oxides at pre-eruptive volcanoes, and formaldehyde from wildfires. Aiming for an eventual many-satellite constellation providing both high spatial resolution and frequent target revisits, the current NACHOS project is launching two CubeSats, the first already launched to the International Space Station aboard the NG-17 Cygnus vehicle on February 19, 2022 and awaiting deployment to its final orbit in June, and the second launching June 29, 2022
    • …
    corecore